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Abstract

This paper is devoted to the short-term forecasting of the hourly aggregated supply curves in Day-Ahead electricity
markets. The time series of supply curves can be considered as a functional time series, which is the realization of a
stochastic process where each observation is a continuous function de�ned on a �nite interval. In order to forecast these
time series, models that operate with continuous functions are required. The standard approach for estimating these
supply curves relies on dimensionality reduction techniques, hence losing some information in the process. This paper
proposes a functional forecasting model that uses the continuous supply curves as inputs and does not require turning
the curves to a limited number of components, thus avoiding the corresponding information loss. The proposed model
is based on a double-seasonal functional SARMAHX model which extends the classical ARMA models and it is able to
capture the daily and weekly seasonality of the series of supply curves. In addition, exogenous variables can be included
to account for the external factors that in�uence the o�ering behavior of the agents. The e�ectiveness of the proposed
model is illustrated by forecasting the hourly aggregated supply curves of the competitors of the main Italian generation
company and is compared to other reference models found in the literature.

Keywords: Supply curve forecasting, functional SARMAHX model, Functional data analysis, functional time series.

1. Introduction

The electric power industry in di�erent countries has
experienced a deregulation process in the last decades which
has given rise to liberalized markets. They allow com-
panies to trade energy in organized auctions. Generally,
day-ahead electricity markets are based on sealed-bid auc-
tions where companies submit their selling o�ers and buy-
ing bids to the Market Operator who then determines the
market-clearing price and the set of accepted bids and of-
fers for each time period [1].

In a simple-bid market, each o�er (or bid) is de�ned by
a price p and a quantity q, which refers to the amount of
energy q the agent is willing to sell (or buy) at that price
p. By sorting the selling (buying) o�ers in increasing (de-
creasing) prices, the aggregated supply (demand) function
for the agent is built. Once all the agents have submitted
their supply curves, the sum of the supply functions results
in the system supply function Sh(p) and the sum of the de-
mand functions of each �rm results in the system demand
function Dh(p). Market-clearing price p∗h is computed for
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each hour as the intersection of the system aggregated sup-
ply and demand curves, hence Dh(p∗h)−Sh(p∗h) = 0. Then,
two possible outcomes generally take e�ect depending on
the auction type. In pay-as-bid auctions, prices paid to
winning suppliers are based on their actual bids. On the
other hand, in marginal pricing auctions all suppliers are
paid the market-clearing price.

For a given generation company i participating in a
market, it is of utmost importance to plan ahead and man-
age the available resources as e�ciently as possible. The
forecasts of di�erent signi�cant market indicators and vari-
ables can provide useful estimations for the agents. For ex-
ample, load forecasting allows for an e�cient management
of resources, optimal scheduling and production planning
for minimizing generation costs [2]. Estimates of the price
allow to plan ahead and cover their operation costs and
hedge against price movements [3]. As a consequence, load
[4], price [5, 6] or wind forecasting [7] are widely studied
and continuously being improved.

Furthermore, the market agent is usually interested in
optimizing its bidding strategy in the market [8]. This can
be done using Residual Demand Curves (RDCs)[9, 10, 11,
12]. RDCs can be de�ned for each hour as the function
that models the o�ering and bidding behavior of all the
competitors and can be calculated as

qi = Rh(p) = Dh(p)− S−ih (p) (1)
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Figure 1: Supply curves in electricity markets. On the left, three
o�er curves de�ned in the price range 0 to 200 e/MWh are shown
. On the right, the hourly sequence of o�er curves for one week is
plotted. For each hour, a function de�ned in the price range 0 to 200
e/MWh is observed.

where S−ih (p) is the supply function of the competitors
of �rm i, which is given by the system supply function
Sh(p) minus the �rm's supply function Sih(p) i.e. S−ih (p) =
Sh(p) − Sih(p). For a given price value p, Rh gives the
maximum energy quantity qi that the generation company
i can sell in the market at hour h.

Assuming that the demand is inelastic, the residual
demand at Eq. (1) becomes

qi = Dh − S−i(p). (2)

Therefore, the problem of forecasting the residual demand
could be split into the forecast of the hourly inelastic de-
mand and the forecast of the supply curves. Demand fore-
casting is widely studied in the literature [13, 14, 15], hence
this work will focus on forecasting the supply functions.

A time series of supply curves can be considered as a
time sequence of curves. Figure 1 shows a representation of
an hourly supply curves time series. The high dimension-
ality and complexity of the supply curves make classical
multivariate forecasting techniques obsolete, highlighting
the need for new methodologies that are able to capture
the dynamic of such processes.

For example, [16] uses Principal Component Analysis
to reduce the dimensionality of the curves. Then, the re-
duced set of variables is forecasted using time series models
and �nally, the estimated curves are obtained by recon-
structing the forecasted scores. Recently, [17] proposed a
price forecasting approach based on estimating supply and
demand curves by means of lasso-based estimation meth-
ods, which was extended in [18] to obtain probabilistic
forecasts of electricity prices by modeling the market bids
for the supply and demand side. In [19], the authors use
functional autoregressive models to obtain estimations of
sale and purchase curves in order to forecast future values
of electricity prices.

In this paper, a functional forecasting approach is pro-
posed. Functional data analysis has been a growing �eld
in statistics, which studies data that are observed in the

form of functions (see [20] and [21] for an overview). In
particular, supply functions can be viewed as a Functional
Time Series {St}t∈N, which is a time-ordered sequence of
random functions {St(p); t = 1, 2, ..., T}. Modeling supply
curves as functional data can take advantage of the math-
ematical background to mitigate the dimensionality issues
that often arise with high dimensional data.

In fact, functional forecasting techniques have been
successfully applied in electicity markets. [22] proposed a
non-parametric functional model to obtain prediction in-
tervals for French electricity consumption. Although the
prediction bands obtained by their model are able to cap-
ture the shapes of the load series, the authors admit that
the model could be improved with the inclusion of exoge-
nous variables such as the temperature. [23] obtains fore-
casts of the German electicity market demand using a fore-
casting model based on functional data analysis of general-
ized quantile curves, whereas [24] applied non-parametric
techniques to forecast the residual demand curves of the
Spanish electricity market. In the latter, the authors in-
clude exogenous variables (such as the wind production
and the electricity demand) into their model, highlight-
ing the need to incorporate these variables to capture the
dynamic of the series. Finally, in order to forecast electric-
ity price pro�les, [25, 26] applied a semi-parametric model
that incorporates scalar exogenous variables that are rel-
evant for price forecasting (such as the wind production
and the electricity demand) obtaining pointwise predic-
tion bands. [27] developed a functional factor model that,
unlike the other models, relies on the decomposition of
the daily price pro�les into a functional basis. Finally, [28]
proposed a functional seasonal ARMAX model to model
the daily price pro�les of the Spanish and German electric-
ity market. However, the previous models analyzed daily
time series, which only exhibit weekly seasonality. The
supply curves form an hourly functional time series, which
will exhibit daily and weekly seasonalities. Hence, the pre-
vious functional approaches to the supply curves problem
are insu�cient. The work [19] illustrates how functional
modeling can be used to forecast this kind of data: the
authors propose functional autoregressive models to ob-
tain forecasts of supply and demand curves. However, this
approach does not account for the e�ect that exogenous
covariates could have on the shape of the curves, as well
as assuming an autoregressive structure on the data with-
out a proper test.

Based on the model developed in [28], which extends
the ARMAX model to the functional framework, this pa-
per proposes several signi�cant theoretical and method-
ological improvements that allows the proposed SARMAHX
model to be successful for forecasting hourly supply curves.
More speci�cally the contributions presented are:

• Introducing up to two seasonal terms in the formu-
lation of the SARMAHX model, which are needed in
order to take into account seasonal dependencies of
hourly functional time series (daily and weekly).
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• Including scalar covariates in the SARMAHX model
to account for scalar inputs. Exogenous variables,
such as the wind and solar production, are neces-
sary to capture the complex dynamics of the sup-
ply curves, hence a competitive forecasting model
for supply curves should be able to include them.

• Introducing a new functional operator that can im-
prove the performance of the SARMAHX model.
If the modeled supply curves do not exhibit cross-
correlations between curves, this new functional op-
erator can ease the optimization of the parameters,
improving the estimation of the model.

• Including an identi�cation and diagnosis procedure
for the SARMAHX model based on the functional
autocorrelation of the series and the residuals of the
model. This methodology is of utmost importance
when �tting the SARMAHX model, allowing the
practitioner to model the dynamic behavior of the
supply curves with a graphical representation of the
autocovariance structure of the data.

• Successful application of the proposed model to a
real case study in the Italian Day-Ahead electricity
market.

The paper is structured as follows: Section 2 introduces
the proposed double-seasonal SARMAHX model with ex-
ogenous variables. Section 3 is devoted to the identi�cation
and diagnosis methodology developed for the SARMAHX
model by means of the lagged autocorrelation of the func-
tional time series and the residuals of the model. Section 4
evaluates the performance of the proposed model compar-
ing the methodology developed in this paper against other
well known forecasting models for supply curve forecast-
ing. Finally, Section 5 provides the concluding remarks.

2. Double seasonal Hilbertian SARMAHX model

This section introduces the functional SARMAHXmodel.
It is de�ned following the standard time series model-
ing approach proposed in [29] but extended to functional
time series using Hilbert operators [28]. The proposed
SARMAHX model generalizes the scalar ARMAX model
by extending the scalar model to functional time series
using Hilbert operators as the parameters of the model.
While the parameters of the classical ARMAX model are
scalar values, the parameters of the SARMAHX model are
functional operators that model the relation between input
and output curves. As such, the modelization and estima-
tion of these functional operators is also detailed in this
section.

A functional time series Y is de�ned as a sequence
of functional observations {Yt(v); t = 1, 2, ..., T ; v ∈ V }
where each observation at time t is a continuous func-
tion taking values on the interval V . Following [21], these
functions are considered as elements belonging to the L2

Hilbert space of real square integrable functions de�ned on
an interval V , this is,

∫
V

(Yt(u))2du <∞.
The SARMAHX(P0, Q0)×(P1, Q1)s1×(P2, Q2)s2 model

is a functional Seasonal Autoregressive Moving Average
Hilbertian model with two seasonalities (although it could
be generalized to any number of seasonalities) which in-
cludes both functional and scalar explanatory variables.
The full expression for the model is de�ned as follows:

2∏
j=0

I − Pj∑
i=1

Ψj,iB
i·sj

(Yt) =

2∏
k=0

(
I −

Qk∑
l=1

Θk,lB
l·sk

)
(εt)

+

Zf∑
z=1

Γfz (Xz
t ) +

Zc∑
z=1

Γcz(x
z
t )

(3)

where:

• {Yt (v) ; t = 1, 2, ..., T ; v ∈ V } a stationary and zero-
mean functional time series

• {Xz
t (vz); z = 1, 2, · · · , Zf ; t = 1, 2, · · · , T ; vz ∈ Vz} a

set of Zf functional covariates

• {xzt ; z = 1, 2, · · · , Zc; t = 1, 2, · · · , T} a set of Zc
scalar covariates

• εt is a functional white noise process.

• I is the identity operator.

• Parameters P0, P1 and P2 are the regular and the
two seasonal autoregressive orders respectively.

• Parameters Q0, Q1 and Q2 are the regular and the
two seasonal moving average orders respectively.

• Parameters s1 and s2 are the seasonal time span for
repeated patterns. Parameter s0 is equal to 0.

• Ψ0,i, Ψ1,i and Ψ2,i are the regular and seasonal au-
toregressive operators.

• Θ0,l, Θ1,l and Θ2,l are the regular and seasonal mov-
ing average operators.

• Γfz are the operators related to the Zf explanatory
variables.

• Γcz are the operators related to the Zc explanatory
variables.

• Bn is the lag operator which is de�ned as BnYt =
Yt−n where n ∈ N.

In [28], integral operators in the L2 space were used for
the ARMA terms, which have the form:

Ψi(f)(v) =

∫
ψi(u, v)f(u)du f ∈ L2 (4)
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The operators for the remaining terms are de�ned alike
except for the scalar covariates' operator, which is de�ned
as Γcz(x)(v) = βz (v)x.

When this model is used for forecasting, all the er-
ror terms are unobserved. Thus, expanding the functional
operators to its integral form and simplifying the lag op-
erators, the empirical forecast equation can be expressed
as follows:

Ŷt(v
′)=

p∑
i=0

P1∑
j=0

P2∑
k=0

∫∫∫
A(v, v′, u, u′)Yt−t̃ (u)dudu′dv

−
q∑
i=0

Q1∑
j=0

Q2∑
k=0

∫∫∫
B(v, v′, u, u′)ε̂t−t̃ (u)dudu′dv

+

Zf∑
z=1

∫
ρz (vz, v

′)Xz
t (vz) dvz +

Zc∑
z=1

βz (v′)xzt ,

(5)

where u, v, v′ ∈ V , vz ∈ Vz, t̃ is de�ned as

t̃ = i+ j · s1 + k · s2,

ε̂t is the estimation of past innovations, which is given by:

ε̂t (u) = Yt (u)− Ŷt (u) (6)

and

A(v, v′, u, u′) = ψ0,i (v, v′)ψ1,j (u′, v)ψ2,k (u, u′) (7)

B(v, v′, u, u′) = θ0,i (v, v′) θ1,j (u′, v) θ2,k (u, u′) (8)

In order to ease the comprehension of the SARMAHX
model, the following example is detailed. The SARMAHX
(1, 1) ×(1, 0)24 model would be de�ned following equation
(3):

Yt = Ψ0,1(Yt−1) + Ψ1,1(Yt−24)−Ψ0,1Ψ1,1(Yt−25)

−Θ0,1(εt−1) + εt,
(9)

where the terms are, respectively, the regular autoregres-
sive, the seasonal autoregressive, the autoregressive sea-
sonal interaction and the moving average term. It should
be noted that the term Ψ0,1Ψ1,1(Yt−25) denotes the com-
position, i.e. Ψ0,1(Ψ1,1(Yt−25)). Then, substituting each
operator by its integral expression, the forecasting equa-
tion becomes:

Ŷt(v
′) =

∫
ψ0,1(u, v′)Yt−1(u) du+

∫
ψ1,1(u, v′)Yt−24(u) du

−
∫∫

ψ0,1(v, v′)ψ1,1(u, v)Yt−25(u) du dv

−
∫
θ0,1(u, v′)ε̂t−1(u) du

(10)

In this paper, concurrent operators are proposed in-
stead of integral operators. They are de�ned as:

Ψi(f)(v) = ψi(v)f(v) f ∈ L2 (11)

The representation capabilities of these operators are
more limited than integral operators, as they are not able
to model cross correlations between curves (i.e. the �rst
part of the input curve a�ecting the last part of the out-
put curve). However, the model is simpli�ed, which can
ease the optimization of the parameters. For example, Eq.
(10) using concurrent operators would have the following
expression:

Ŷt(u) =ψ0,1(u)Yt−1(u)+ψ1,1(u)Yt−24(u)

−ψ0,1(u)ψ1,1(u)Yt−25(u)−θ0,1(u)ε̂t−1(u)
(12)

As a conclusion, the resulting model admits a wide
variety of con�gurations: autoregressive and moving aver-
age terms up to two seasonalities as well as the inclusion
of scalar and functional explanatory variables. Therefore,
this model is suitable for most functional time series found
in the electricity markets.

2.1. Estimation procedure

In order to �t the SARMAHX model, each integral
operator must be estimated from the observed data. As
shown in Eq. (4), estimating an integral operator Ψ im-
plies estimating the associated kernel surface ψ(u, v). The
standard approach for the estimation of these operators is
to project the kernel into a subspace spanned by a func-
tional basis, as seen in [30, 31]. Then, the coordinates
of the kernel in that subspace are optimized so that the
forecasting error is minimized. Thus, the selection of the
functional basis is critical when applying these estimation
methods.

In order to avoid choosing one �xed functional basis,
the SARMAHX model follows a novel approach to func-
tional parameter estimation: each kernel function is mod-
eled as a �nite sum of bivariate sigmoid functions [28].
Sigmoid functions are universal function approximates [32]
which are commonly used in neural networks due to their
properties to model non-linear relations. As such, each
bivariate kernel ψ(u, v) can be modeled as:

ψ(u, v) = α0 +

Gψ∑
g=1

αg tanh (wg0 + wg1u+ wg2v) , (13)

where wg0, wg1, wg2, αg and α0 are the parameters that de-
�ne each sigmoid. The variables u and v take real values
in the intervals in which the functional variables are de-
�ned (i.e. V or Vz). In the case of a concurrent operator
(11), this expression is simpli�ed, modeling each kernel as
a �nite sum of univariate sigmoids:

ψ(v) = α0 +

Gψ∑
g=1

αg tanh (wg0 + wg1v) . (14)

This approach can be viewed as a Multi-Layer Per-
ceptron (MLP) neural network with a particular con�g-
uration: an input layer with two input variables and a
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Figure 2: (Part a) Architecture diagram of the neural network used for optimizing the functional parameters of the SARMAHX model. (Part
b) Kernel function estimated with 3 bivariate sigmoid functions and a constant surface.

bias; one hidden layer with a number Gψ of nonlinear hid-
den units with hyperbolic tangent as the activation func-
tion and wg0, wg1, wg2 as the weights for each input. Fi-
nally, one output layer with one linear output unit having
αg as the weights for the activation of the hidden units.
Fig. 2a shows the architecture diagram of the aforemen-
tioned network with Gψ = 3 hidden layers. The property
of sigmoidal surfaces being universal approximators is il-
lustrated in Fig. 2b, where a rather complex surface is
modeled as the sum of 3 sigmoidal functions and a con-
stant surface that models the level of the �nal surface.
It has been observed that using 5 or 6 sigmoid functions
when �tting the SARMAHX model is enough in the vast
majority of practical applications, due to the �exibility of
sigmoid functions.

The parameters (wg0, wg1, wg2, αg, α0) completely de-
�ne each bivariate sigmoid in Eq. (13). Therefore, the
proposed SARMAHX model is estimated when values for
all these parameters are estimated. In order to achieve
this, a low-memory Quasi Newton method with random
initial weights has been implemented to optimize these
real-valued parameters so as to minimize a certain cost
function. In this paper, the cost function C for estimat-
ing the SARMAHX model is de�ned as the sum of the L2

square errors,

C =

T∑
t=1

et, (15)

where

et =
∥∥∥Yt − Ŷt∥∥∥2

L2
=

∫ (
Yt(u)− Ŷt(u)

)2
du. (16)

The implemented Quasi Newton method is a gradient
descent algorithm, so the derivatives of the error term (15)
with respect to the sigmoid parameters are needed. The
derivative of the error function with respect to a general
parameter W is given by:

∂C

∂W
=

T∑
t=1

∫
2
(
Yt(u)− Ŷt(u)

)(
−∂Ŷt(u)

∂W

)
du, (17)
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Figure 3: Evolution of both training and validation errors in the
optimization process for the SARMAHX model. The training error
always decreases in each iteration of the algorithm, but the same is
not true for the validation set. The early-stopping method is used
to select the parameter con�guration that yields a lower validation
error (marked in the �gure with a square).

where ∂Ŷt(u)
∂W is the derivative of the estimation with re-

spect to the generic parameterW . In order to reduce com-
putational times, analytical expressions for these deriva-
tives have been obtained. The reader is referred to [28] for
the formulation of the derivatives of the cost function with
respect to the weight parameters.

However, neural network procedures are known to have
a tendency towards over�tting. If no regularization tech-
niques are used in the learning process, the resulting net-
work will be so closely �tted to the training data that it
causes the model to not generalize well in the presence
of new data. In order to prevent this e�ect, early stop-
ping methodology is used: the observed data is split into
a training and a validation set and executing the opti-
mization algorithm with the training set, thus minimizing
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the cost function over these data. At the same time, the
adjusted model in each iteration is being evaluated with
the validation set. Fig. 3 illustrates this methodology:
the training error of the model decreases in each iteration
while the error among the validation set is oscillating. As
the best model is the one with better generalization per-
formance among an unknown dataset, the �nal model will
be the one that produces a lower error in the validation
data.

The training and evaluation of the SARMAHX model
has been implemented in C programming language. This
includes the quasi-Newton algorithm and the derivatives
which feed the quasi-Newton. It is a common procedure
in neural network implementations to normalize or stan-
dardize the input and output variables, so both the time
series {Yt} and the functional covariates {Xt} are centered
and normalized as

Y ∗t (v) = Yt(v)/σY , X∗t (v) = Xt(v)/σX , (18)

where σY and σX are normalization values for which Y ∗t (v) ∈
[−1, 1] and X∗t (v) ∈ [−1, 1]. Similarly, in order to help the
algorithm to converge faster and as a way to minimize the
risk of falling into a local minimum, the domain of the time
series {Y ∗t } and the functional covariates {X∗t } is moved to
the range [−1, 1]. By default, the sigmoid parameters are
initialized with small values, causing the sigmoids to be
centered around 0. As such, the position of the sigmoids
wont need to move far from that initial position.

2.2. Increasing transformation

In the previous sections, the estimation procedure for
the SARMAHX has been detailed. However, when fore-
casting certain types of data, some post-processing method
has to be implemented to improve the raw output of the
model. One such case is the one that concerns us: forecast-
ing aggregated supply curves in the Day-Ahead electricity
market. These curves are always monotonically increasing
curves, due to the sheer de�nition of the supply functions.
The formulation of the SARMAHX model does not en-
sure that the estimations of the model are non-decreasing
functions, so in order to obtain faithful estimations of
these curves with the proposed model, output curves of
the model Ŷt are transformed into monotonically increas-
ing curves Ŷ +

t obtained as the solution of the following
optimization problem:

minimize
Ŷ +
t

1

2

∥∥∥Ŷ +
t − Ŷt

∥∥∥2 (19a)

subject to 0 ≤ Ŷ +
t (vi) ≤ Ŷ +

t (vi+1), i = 1, . . . , N − 1,
(19b)

where {v1, . . . , vN} denotes the discretization points of the
functional observations. The objective function to be min-
imized (19a) is the distance between the estimated curves
and their monotonic transformation, while constraint (19b)

ensures that the new curve is non-decreasing. The opti-
mization problem is solved by linear least squares.

This transformation guarantees that the estimated curves
are monotonically increasing, while retaining the shape
that has been estimated by the SARMAHX model. It
should be noted that the problem of estimating curves
that can be non-monotonic curves is a known issue that
happens to the vast majority of forecasting models, for ex-
ample if the parameter estimates for one regressor is neg-
ative and a new value of this variable is positive. Hence-
forth, in order to provide a fair comparison between the
SARMAHX model and other forecasting models found in
the literature, the proposed transformation will be applied
to the estimates of all models considered in this paper.

3. Functional autocorrelation and model identi�-

cation

A common procedure in time series analysis is analyz-
ing the correlation structure of the series in order to select
the proper con�guration for the model. Order selection is
a central issue in forecasting, and while the literature for
scalar time series is extensive (see [33, 34, 29] for a compre-
hensive review), few studies have addressed the problem of
selecting the order of a functional time series model. Ini-
tial work on this topic has focused on developing statistical
tests for the adequacy of a more complex model instead
of a simpler one. In [35], the authors develop a statisti-
cal test to check if using a functional autoregressive model
of order p (ARH(p)) produces better results than using a
ARH(p − 1). Other works, such as [36] and [37] measure
the deviation between the residuals of a �tted functional
linear model and a functional white noise series to diag-
nose the �tted model. However, none of these techniques
provides the user with a general identi�cation tool that
can be used to select the ARMA order and seasonality of
a functional linear model.

Classical identi�cation methods for scalar time series,
such as the Box-Jenkins methodology [29], use the sample
autocorrelation function of the time series in order to iden-
tify the underlying correlation structure of the series. This
concept can be extended to the functional framework using
the functional equivalent, the lagged autocovariance func-
tion. Given a functional time series {Yt (v) ; t = 1, 2, ..., T ;
v ∈ V }, one can de�ne the sample lagged autocovariance
functions of the series for lag h as

Ĉh(u, v) =
1

T

T−h∑
i=1

(Yi(u)−Y T (u))(Yi+h(v)−Y T (v)) (20)

where

Y T (u) =
1

T

T∑
i=1

Yi(u) (21)

denotes the sample mean function. The lagged autoco-
variance function Ĉh(u, v) shows the existing relationship
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1. Plot the FACF of the series. 

Identify seasonal behavior.
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stationary.
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Figure 4: General procedure for identifying and diagnosing a
SARMAHX model using the proposed FACF.

between the time series of curves with its lagged func-
tional observations. By considering the L2 norm of these
surfaces, [38] develops a Functional Autocorrelation plot
(FACF) de�ning the functional autocorrelation coe�cient
at lag h as

ρ̂h =
‖Ĉh‖∫

Ĉ0(u, u)du
(22)

The distribution of these coe�cients under the hypothesis
of white noise was obtained in [39], thus it can be used to
identify if there is a signi�cant correlation between obser-
vations t and t− h.

This paper shows how the FACF can be used as an
identi�cation methodology for the proposed SARMAHX
model in a practical application. Firstly, any seasonalities
in the data can be detected by looking at the FACF plot
of the series. As in the univariate case, integrated time se-
ries will show a slow decrease in the FACF [40, 41], hence
the functional time series must be di�erentiated to obtain
a stationary series. Secondly, the FACF of the stationary
series can be used to identify the AR and MA orders of
the SARMAHX model following a similar approach as in
the scalar case [29]. According to (3), if the model has
been succesfully identi�ed, its residuals should look like a
functional white noise process, thus not showing any kind
of autocorrelation. This can be checked by analyzing the
FACF of the residuals of the �tted model: if the FACF of
the residuals reveals that there is some signi�cative cor-
relation remaining, the orders of the SARMAHX model
should be modi�ed in order to capture that relation. Fi-
nally, the residuals of the model can be diagnosed by means
of their FACF. If signi�cant autocorrelations are detected,
then the null hypothesis of functional white noise is re-
jected and the identi�cation process continues. Once all
the values of the FACF are within the threshold limits, the
identi�cation of the model comes to an end and forecasts
can be obtained. Fig. 4 summarizes this procedure.

4. Case study: Forecasting supply curves in the

Italian Day-Ahead electricity market

This section is devoted to the case study of forecasting
supply curves in electricity markets. This is very useful for
electricity companies that want to foresee the competitors'
behavior and optimize their bidding strategy. The set up of
this case study is based on [16], where the author analyzes
the forecasting of supply functions of competitors in the
Italian electricity market using functional models. Despite
the fact the the Italian market consists in 6 inteconnected
zones, for simplicity, and following [16], the Italian market
is considered as a single market, as if there were no sat-
uration constraints between zones. The detailed research
of each zone would be of much interest, but is out of the
scope of this paper.

This paper is devoted to illustrate the applicability
of the proposed SARMAHX model to obtain short-term
forecasts of the aggregated supply curves in the Italian
Day-Ahead Market. The Day-Ahead Market (MGP) is
the venue for the trading of electricity supply o�ers and
demand bids for each hour of the next day. The MGP
opens at 8:00 A.M. of the ninth day before the day of de-
livery and closes at 12:00 P.M. of the day before the day of
delivery. Participants submit their bids where they spec-
ify the amount and the maximum and minimum price at
which they are willing to buy and sell electricity for each
hourly auction. Once the MGP closes, bids and o�ers are
accepted based on the economic merit-order criterion and
taking into account transmission capacity limits between
zones. Where these constraints are binding, the market ef-
fectively splits and distinct zonal clearing prices are deter-
mined. While generators are paid the relevant zonal price,
the accepted demand bids pertaining to consuming units
are evaluated at the single national price (PUN) which is
computed as the average of the zonal prices weighted by
zonal consumption [42].

The results of the MGP are made known within 12.55
P.M. of the day before the day of delivery. As pointed
out in [19], due to con�dentiality policies, the Italian Mar-
ket Operator (GME) does not publish the detailed infor-
mation relative to demand bids and supply o�ers for a
con�dentiality period of seven days, beginning on the day
following the close of the market sitting to which they
refer. However, for market participants, anonymized con-
�dential results (including the acceptance/rejection of the
bids and the aggregated supply curves without informa-
tion about the geographical zone of each bid) are avail-
able at https://www.IPEX.it. As this study is concerned
with forecasting the aggregated supply curves (instead of
the zonal supply curves), all the data from hourly supply
curves up to day D is available to forecast the hourly sup-
ply curves for day D+1 before the closing of MGP auction
for day D + 1.

Consequently, the setup for the real case study is as
follows. Supply curves for the competitors of Enel, a ma-
jor electricity company in Italy, are obtained by aggregat-
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ing all the zonal competitors' supply curves. For these
study, supply curves are limited to the price range [0, 200]
e/MWh, as in Figure 1. Therefore, each functional ob-
servation is the aggregated supply curve submitted to the
market in each hour. The time range of the data is from
01/03/2015 up to 29/02/2016, thus consisting of 8784 curves.
The data has been obtained from the Italian Electricity
Market Operator (www.mercatoelettrico.org) and is di-
vided into two sets: The In-Sample period is considered
from 01/03/2015 to 31/08/2015, which will be used for
training the models. The remaining data is left for the
Out-Of-Sample period.

The o�ering behavior of the agents is conditioned to
the weather and the particular circumstances of each day.
Consequently, explanatory variables are used as a way to
account for the external factors that might in�uence the
traders decision. The explanatory variables used in this
study are the following:

• Total electricity demand of Italy. The demand is of
utmost importance to account for the consumption
of energy in the country.

• Total wind power production. The south of Italy
hosts a great number of wind farms which have a sig-
ni�cant impact on the supply curves in windy days.

• Total solar production. The north of Italy is the re-
gion with the greatest solar power capacity installed.
Therefore, the solar production should be signi�cant.

• Thermal availability. It is the sum of all the energy
o�ered in the market by thermal units.

• Energy exchanged from Italy to to the adjacent Eu-
ropean countries: France, Switzerland, Austria, Slove-
nia, Greece and Malta. These exchanges play a very
important role in the energy trading of the country.

It is worth noting that real values, instead of forecasts, of
the explanatory variables are used for both training and
validation of all the models considered in this study. In
real operation the actual values of these variables are un-
known, so future scenarios of the exogenous variables have
to be used instead. The Italian Market Operator pub-
lishes hourly forecasts of the total electricity demand and
international exchanges for day D + 1 at day D, so the
proposed models can use them to obtain estimations of
the houry supply curves before the auction for day D + 1
closes. Other variables, such as the the thermal availabil-
ity and solar and wind production should be forecasted
in order to use them as inputs for the forecasting mod-
els. These models provide useful indicators for any mar-
ket agent, hence in this study it is assumed that market
participants already have forecasts of these variables. His-
torical information about the aforementioned variables can
be obtained from the Transparency Platform of ENTSO-
E, the European Network of Transmission System Oper-
ators (https://transparency.entsoe.eu/). As the out-
put time series are hourly curves and these explanatory

variables are hourly values, the model will consider them
as scalar covariates and not functional covariates.

The remainder of the section is divided into two parts.
Firstly, the �tting of the SARMAHX model is detailed,
showing the identi�cation process proposed in this work.
Secondly, a comparison with other reference models is pre-
sented.

4.1. SARMAHX model identi�cation

The proposed functional SARMAHX model is iden-
ti�ed and trained with the In-Sample data of this case
study. Both integral and concurrent operators are used.
Firstly, the autocorrelation structure of the series of sup-
ply curves in the Italian electricity market is identi�ed
using the FACF and the proposed identi�cation procedure
shown in Fig. 4. The �rst graph in Fig. 5 shows the
seasonal behavior of the series: a high autocorrelation on
lags 24 and 168 indicates that the series has strong daily
and weekly seasonalities. The decay pattern of the FACF
indicates the presence of an auto-regressive part in the
series. The serial autocorrelation is still present in the
second graph of Fig. 5, that shows the autocorrelation
structure of the residuals of a �tted SARMAHX(0, 0) ×
(0, 0)24 × (0, 0)168 including exogenous variables. These
explanatory variables are included to capture the e�ect of
these exogenous terms in the supply curves. As the output
time series are hourly curves and the explanatory variables
are hourly values, the model will consider them as scalar
covariates. The strong serial correlation in the regression
residuals of the SARMAHX model indicates that the dy-
namic of the series has to be modeled in order to obtain
accurate forecasts of our data.

A SARMAHX(1, 0) ×(1, 0)24 ×(1, 0)168 model is �tted
to model the auto-regressive part observed in the residu-
als of the regression model. The third graph in Fig. 5
shows the functional autocorrelation of the residuals of
this SARMAHX(1, 0) ×(1, 0)24 ×(1, 0)168 model. As can
be seen, signi�cant correlated lags are found at multiples
of 24 and 168 hours. Hence, there are daily and weekly
e�ects that have not been captured by the explanatory
variables and the AR terms that should be modeled.

In order to select the optimal autoregressive and mov-
ing average orders of the SARMAHX model, the identi�-
cation methodology presented in Section 3 was used. Reg-
ular and seasonal moving average terms have been added
into the model to account for the signi�cant correlated
lags found in the previous FACF residual plot of the pre-
vious model. An iterative process has been carried out
until the residuals of the �tted model are functional white
noise. The �nal adjusted model for both concurrent and
functional cases is a SARMAHX(2, 0) ×(1, 2)24 ×(1, 2)168
model. The formulation of both models can be found in the
Appendix. Throughout this paper, these models will be
denoted by SARMAHX (functional case) and SARMAHX-
conc (concurrent case).

The fourth image in in Fig. 5 shows the autocorre-
lation function of the residuals of the �tted concurrent
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Figure 5: First 528 lags of the functional autocorrelation function (FACF). From top to bottom: (a) FACF of functional time series of Italian
supply curves. (b) FACF of the regression residuals of a �tted SARMAHX(0, 0)× (0, 0)24 × (0, 0)168 including the aforementioned exogenous
variables. (c) FACF of residuals of the �tted SARMAHX(1, 0)× (1, 0)24 × (1, 0)168 concurrent model including exogenous variables. A high
autocorrelation value is found at multiples of 24 and 168 hours. (d) FACF of residuals of the �tted SARMAHX(2, 0) × (1, 2)24 × (1, 2)168
concurrent model including exogenous variables. As there are no signi�cative autocorrelation values for any lags, the residuals can be viewed
as a functional white noise process. In all images, the horizontal line represents the 95% upper limit of the distribution of the statistic under
the white noise hypothesis.
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Figure 6: Operators' kernels for the regressors of the SARMAHX
model in Supply Curve forecasting study.

SARMAHXmodel with the 95% upper bound of the statis-
tics under the white noise hypothesis. As most values fall
below this upper bound, the hypothesis of the residuals
being white noise cannot be rejected, hence validating the
model from a linear point of view.

The computation time for a sequential implementation

of the SARMAHX estimation algorithm depends heavily
on the size of the training dataset: with the con�guration
(2, 0)× (1, 2)24× (1, 2)168 and a training dataset with 4416
curves discretized in 201 points; 500 iterations of the op-
timization algorithm took 3.027 hours when running on
an i7-6700 CPU at 3.40 GHz with 32 GB of RAM. How-
ever, this process had to be carried only once: once �tted,
the evaluation of the SARMAHX model is much faster,
taking 6.52 seconds to obtain forecasts for the whole Out-
Of-Sample period. In addition, this estimation algorithm
could be improved by using parallel computation to speed
up the whole process.

It is worth analyzing the resulting shapes of the �t-
ted functional parameters. Fig. 6 shows the concurrent
regressor operators. Analyzing these shapes, the e�ect of
each variable on the o�ering curve can be seen. The de-
mand has positive values for each price, meaning that for
higher demand, the energy o�ered at all prices increases.
In fact, the o�er increases more at higher prices than at
lower prices, meaning that the increase in demand is usu-
ally covered with more expensive generation. Wind and
solar production have somewhat �at coe�cients. Usually,
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these renewal production is o�ered at price 0, thus, sim-
ply displacing the curve up or down. The international
exchange, on the other hand, has negative values. This
means that when more energy is imported, the supply
curve has less energy being o�ered.

4.2. Empirical comparison

This section compares the �tted SARMAHX models
with some reference models. Two di�erent analysis are
presented. On the one hand, as the proposed model is
trained to minimize the one-step ahead forecast error, a
one-hour ahead forecast is analyzed. However, in the Ital-
ian electricity market, the auctions for the 24 hours of the
day are cleared at the same time. Therefore, a 24-hour
ahead forecast is also considered, validating the use in a
real case application.

All the models included in this study were �tted using
data from the In-Sample period. Once their parameters
have been estimated, estimations are obtained for both
the In-Sample and the Out-Of-Sample period, without re-
calibrating the parameters of the models. For the 24-hour
ahead forecast, a rolling window approach is used: when
forecasting the �rst hour h = 1 of dayD+1, the estimation
ŶD+h uses the real curves up to day D. However, when
forecasting hours h > 1, the real curves have not been
observed, so past estimations of the model are used as
inputs for the model.

Following [43] and [28], forecasting models for func-
tional time series can be classi�ed in 3 main groups, ac-
cording to the techniques that are used to obtain estima-
tions of the parameters of the model: parametric, non-
parametric and dimensionality reduction models. Para-
metric models, such as the proposed SARMAHX model,
assume that the parameters can be expressed as integral
operators. Conversely, non-parametric models do not de-
�ne a �xed structure for the operators of the model, in-
stead relying on kernel estimators or other non-parametric

techniques to �t the parameters of the models. Finally,
dimensionality reduction models pursue the goal of trans-
forming the functional time series into a reduced set of
scalar variables so that multivariate techniques can be ap-
plied to the estimation of the �nal model. In order to
provide a fair comparison, one model for each group will
be included in this study, to test the forecasting capabil-
ities of the proposed model against the best performing
functional models found in the literature. The models to
be compared are described ahead:

• Naïve. Simple benchmark model that provides a ref-
erence to compare the tested models. Two versions
are used, depending whether the simulation is one-
step or 24-step forecast. In the �rst case, the forecast
is simply the last curve observed in the data, i.e. the
curve from the previous hour. In the second case,
for Tuesdays, Wednesdays, Thursdays and Fridays,
the forecast will be the hourly curve of the previ-
ous day, while for Saturdays, Sundays and Mondays,
the forecast will be the hourly curve of the previous
week.

• Principal Components approach. This method is used
in [16] for supply curves forecasting. It extracts the
�rst Functional Principal Components of the curves
and the corresponding time series of scores. Then,
the scores are forecasted by means of Transfer Func-
tion (TF) models [44], which include explanatory
variables. The �nal estimation of the curves is done
by reconstructing the estimated scores. The In-Sample
period is used for training all models. FPCs are ex-
tracted for that range and the parameters of the TF
are estimated. In the Out-Of-Sample period, the
component scores are obtained, by projecting the
curves into the basis spanned by the FPCs previ-
ously extracted.

Fig. 7 represents the mean function, the principal
components and the scores obtained for the curves
time series. Three and four principal components
are extracted, which explain the 98% and 99% of
the variance of the data respectively. It is worth
noting that each forecasted curve from this method
is a linear combination of only the 3 or 4 principal
component extracted. These models will be denoted
as PC_FT3 and PC_FT4, respectively.

• Functional nonparametric approach. When forecast-
ing functional time series, one of the most popular
models found in the literature is the functional non-
parametric model (the reader is referred to [43] for a
comprehensive review of nonparametric techniques
applied to functional data). The functional non-
parametric model [45] assumes that the functional
response Yt can be modeled as a non-linear function
of functional covariates Xt.

Yt(v) = m(Xt)(v) + εt(v), (23)
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Table 1: Average errors for each method in the one-step and 24-step ahead prediction in Supply Curve forecasting study. The lower errors
obtained for each forecasting horizon are marked in bold.

In-Sample Out-Of-Sample
Forecasting

horizon
Model

FMAE
[MWh]

FRMSE
[MWh]

FMAE
[MWh]

FRMSE
[MWh]

1-Step Ahead

Naïve 909.39 1258.46 818.59 1179.16

PC_FT3 353.85 470.51 480.54 694.15
PC_FT4 276.65 378.83 416.05 569.36

NPARHX 389.30 553.53 641.92 884.50

SARMAHX 264.62 363.10 313.11 429.66
SARMAHXconc 248.58 354.97 288.66 407.81

24-Step Ahead

Naïve 1075.3 1433.5 1382.3 1812.50

PC_FT3 672.06 871.33 856.62 1148.1
PC_FT4 639.46 834.46 811.69 1085.07

NPARHX 743.47 1010.01 987.41 1311.51

SARMAHX 590.08 787.34 709.70 963.49
SARMAHXconc 557.37 764.73 655.19 885.86

Table 2: Diebold-Mariano test's p-values for Out-Of-Sample period
in the one-step ahead forecasts in Supply Curve forecasting study.
p-values that are lower than 0.05 are marked in bold.

Models N
a
ïv
e

P
C
_
F
T
3

P
C
_
F
T
4

N
P
A
R
H
X

S
A
R
M
A
H
X

S
A
R
M
A
H
X
co
n
c

Naïve -

PC_FT3 0 -
PC_FT4 0 0 -

NPARHX 0 0 0 -

SARMAHX 0 0 0 0 -
SARMAHXconc 0 0 0 0 0 -

where m(.) is an unknown nonlinear operator and εt
is a functional white noise process. Nonparametric
models do not de�ne a �xed structure for the opera-
tor m(.), instead they employ a functional version of
the Nadaraya-Watson kernel estimator to estimate
the regression operator:

m̂h(Xt) =

∑T
i=1 YiK

(
h−1d(Xt, Xi)

)∑T
i=1K (h−1d(Xt, Xi))

, (24)

where K is a kernel function, h > 0 is a bandwidth
parameter and d is a semimetric. A nonparamet-
ric version of the functional autoregressive model of
order 1 can be de�ned with this model, using past re-
alizations of the process as the functional covariate:

Yt(v) = m(Yt−1)(v) + εt(v). (25)

Table 3: Diebold-Mariano test's p-values for Out-Of-Sample period
in the 24-step ahead forecasts in Supply Curve forecasting study.
p-values that are lower than 0.05 are marked in bold

Models N
a
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e
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_
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C
_
F
T
4

N
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A
R
H
X

S
A
R
M
A
H
X

S
A
R
M
A
H
X
co
n
c

Naïve -

PC_FT3 0 -
PC_FT4 0 0 -

NPARHX 0 0.001 0 -

SARMAHX 0 0.0001 0.1162 -
SARMAHXconc 0 0 0 0 0 -

This model was used in [19] to obtain forecasts of
supply and purchase curves in the Italian Day-Ahead
market in order to obtain accurate estimations of the
market price. However, as all the models that will be
compared against the proposed SARMAHX model
use exogenous variables, a variation of this model will
be included in the comparison study instead. The
semi-functional partial lineal model [24, 25] allows
the inclusion of exogenous scalar variables, general-
izing the functional nonparametric model (25). The
expression of the model is as follows:

Yt(v) = xᵀ
t β(v) +m(Yt−1)(v) + εt(v) (26)

where xᵀ
t = (xt,1, . . . , xt,p) is a vector of p exogenous

scalar covariates and β(v) = (β1(v), . . . , βp(v)) is a
vector of unknown functional parameters to be esti-
mated. The authors obtain estimations for these pa-
rameters using kernel smoothing and ordinary least
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squares ideas. In order to �t this model to the supply
curve dataset, the parameters have been selected as
follows: the kernel functionK used was the Epanech-
nikov, de�ned as K(u) = 3/4(1−u2); the bandwidth
parameter h has been selected using the k-nearest
neighbours method proposed in [46]; and the semi-
metric d selected is based on the L2 norm of the
curves. Throughout this paper, this model will be
denoted as NPARHX.

All the models are trained with the In-Sample period
and using the same exogenous variables. Then, each one
produces a 1-step ahead forecast, assuming that the curve
of last hour is known, and a 24-step ahead forecast, where
the 24 hours of the following day are forecasted being the
last observed curve the hour 24 of the current day. Hence-
forth, 1-step and 24-step ahead forecasts are produced
for the whole data range. Functional errors FMAE and
FRMSE are calculated, which are de�ned as

FMAE = T−1
T∑
t=1

∫
|Yt(u)− Ŷt(u)|du (27)

FRMSE =

√√√√T−1
T∑
t=1

∫ (
Yt(u)− Ŷt(u)

)2
du (28)

Table 1 shows the functional errors for the 1-step and
the 24-step ahead forecasts for both the In-Sample and
Out-Of-Sample periods. The proposed SARMAHX model
shows a clear advantage over the reference models, ob-
taining a FMAE of 288.66 MWh that is much lower than
the FMAE of the PC_FT4 (the best reference model),
which achieves a FMAE of 416.05 MWh in the Out-Of-
Sample period of the 1-step ahead forecasting study. For
the 24-step ahead forecasting case, the results are simi-
lar: while the PC_FT4 model obtains a FMAE of 811.69
MWh, it is not able to improve the results of the concur-
rent SARMAHX model, that achieves a FMAE of 655.19
MWh in the Out-Of-Sample period. The estimation re-
sults are analyzed ahead in detail.

Firstly, looking at the 1-step ahead forecasts it can be
seen how the functional approach outperforms the other
methods in both the In-Sample and Out-Of-Sample peri-
ods. Moreover, the concurrent functional approach is the
one that provides the best results, with a mean absolute
error of 289 MWh in the Out-of-Sample period, whereas
the FMAE of the PC_FT4 model is 416 MWh. This dif-
ference validates the usefulness of the SARMAHX model
as a competitive model to forecast supply curves. Sev-
eral conclusions can be drawn from these results. Firstly,
even though FPCA approach also uses a time series model,
the fact of reducing the dimensionality signi�cantly a�ects
the performance. As the Principal Components are kept
untouched, the forecasts cannot adapt to changes in the
functional time series and the reconstruction of the curves
looses precision. On the contrary, the proposed functional

model does not rely on any basis expansion of the series
and it takes into account the whole curve values from the
recent past. Therefore, it can better account for changes
in the series. In addition, as the nonparametric approach
does not take into account the seasonality structure of the
data, it is not able to achieve the same results as the other
reference models. Finally, the use of concurrent operators
in the SARMAHX model returns better results than inte-
gral operators. This means that the cross correlations be-
tween supply curves might not be very important, hence,
the adjustment of the parameters might be easier for the
concurrent model. Fig. 8 shows some forecasting exam-
ples for the one step-ahead case, where the capability of
the concurrent SARMAHX model of estimating the shape
of the supply curves is highlighted. Whereas the proposed
model is able to accurately estimate the supply curves, the
reference models are not capable of capturing the complex
bidding behavior exhibited by the supply curves, provid-
ing only a smooth approximation to the curves that does
not take into account the step-wise nature of the curves.

Secondly, the 24-step forecasts show similar results to
the 1-step ahead case. The concurrent SARMAHX model
provides better average errors with respect to the other
models. While the PC_FT4 model has a mean absolute
error of 811 MWh for the Out-Of-Sample period, the con-
current SARMAHX model has a much lower mean abso-
lute error of 655 MWh, proving itself to be a competitive
forecasting model. Globally, 24-step ahead errors are much
higher than 1-step ahead errors, i.e. around 4% error for
the 24-step and around 2% error for the 1-step. Supply
curves are the result of aggregating the o�ers of competi-
tors in the market. These o�ers respond to the di�erent
strategies of the agents which, in many cases, have a com-
mon behavior for the whole day. This is the case if there
is some technical constraint on a power plant for that day.
Therefore, strategies are planed for the whole day, and
consequently, once the curve for the �rst hour is known,
it helps to improve signi�cantly the forecast of the follow-
ing hours. This can be seen in Fig. 10. Forecasting the
�rst hour is very important to the rest of the prediction,
specially for the �rst hours of the day. Fig. 9 shows some
forecasting examples for the 24-step case. As can be seen,
the concurrent SARMAHX model provides better estima-
tions of the supply curves than the other models, obtaining
a much lower error than the reference models.

Additionally, Tables 2 and 3 show the Diebold-Mariano
(DM) [47] test applied to each pair of forecasts. This test is
a head-to-head method which compares the forecast error
of two di�erent models. Each cell of Tables 2 and 3 con-
tains the p-value that results from comparing the model of
the cell's row against the model of the cell's column. A low
p-value means that the null hypothesis has to be rejected
and therefore the forecasting errors can be considered sta-
tistically di�erent. The DM test validates the Out-Sample
results, yielding very low p-values between model compar-
isons. Then, the equal forecast null hypothesis can be
rejected. This analysis emphasizes the statistical di�er-
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Figure 8: Top: Forecast examples for 1-step ahead estimations in the Out-Of-Sample periods in Supply Curve forecasting study. Curves in
the price range [40, 60] e/MWh are shown in detail, highlighting the di�erences between the di�erent forecasting models. Bottom: Absolute
value of the residual curves of the models.
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Figure 9: Top: Forecast examples for 24-step ahead estimations in the Out-Of-Sample periods in Supply Curve forecasting study. Curves in
the price range [40, 60] e/MWh are shown in detail, highlighting the di�erences between the di�erent forecasting models. Bottom: Absolute
value of the residual curves of the models.

ence between the proposed model and the other models
considered in this study.

4.3. In-depth analysis of the results

In the Italian Day-Ahead market, the market-clearing
price is usually located in the price range [30, 70] e/MWh

[19], hence the volume of the agents' bids will be signif-
icantly higher in that portion of the aggregated supply
curve. Thus, obtaining accurate forecast of the supply
curve in that region is of utmost importance for any com-
pany. As can be seen in both Fig. 8 and Fig. 9, the
concurrent SARMAHX model is able to capture the shape
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Figure 10: FMAE for each hour in the 1-step and 24-step ahead forecasts in the Out-Of-Sample period in Supply Curve forecasting study. As
the FMAE error of the Naive model is signi�cantly higher than the other models, it is not included. The shaded regions are 90% con�dence
bands for the FMAE.

Figure 11: Mean absolute error for each price in the 1-step and 24-step ahead forecasts in the Out-Of-Sample period in Supply Curve
forecasting study. The shaded regions are 90% con�dence bands for the MAE.

of the supply curve in that price range, providing an ac-
curate description of the agents' bidding behavior in the
zone of interest of the supply curve.

The shape of the estimated supply curves is essential
when analyzing the strategic o�ering of the competitors of
an electricity company, because it contains valuable infor-
mation about the o�ering behavior of the agents. Fore-
casted supply curves, together with estimations of the de-
mand, can be used to de�ne RDCs (1), which are often
used to calibrate market equilibrium models [48] as well
as o�ering optimization models [9]. In [49], the authors
analyze the importance of obtaining faithful estimations
of the slopes of RDCs, since it indicates an agent's capa-
bility to in�uence market prices. This highlights the need
for a forecasting model that not only captures the general
level of the supply curves, but also provides an accurate
estimation of the shape of the curve.

As can be seen in Fig. 11, MAE errors are presented
for each price for the Out-Of-Sample period and for the
1-step and 24-step ahead forecasts, which are obtained as
the mean value of the absolute error for each price of the
curves. The �gures show the performance of each method
for di�erent ranges of prices. It can be seen how the the
SARMAHX models yield smoother errors across prices.
Again, as the proposed models do not depend on the FPCs,
it can adapt better to the bidding steps in the curve. The
most signi�cant improvement is seen in the aforementioned
price range of interest: for example, whereas the mean ab-
solute error of the PC_FT4 model at price 50 e/MWh
is 1000 MWh, the concurrent SARMAHX model achieves
a mean absolute error of 730 MWh in the 24-step ahead
forecast. This di�erence is more pronounced in the one-
step ahead study, where the mean absolute errors of the
PC_FT4 model in the price range of interest are close
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to 800 MWh as opposed to the errors of the SARMAHX
model, which are near 350 MWh. In addition, con�dence
bands for the MAE errors are included to ease the in-
terpretation of the results. As the con�dence bands do
not overlap, it can be concluded that the errors of the
SARMAHX models are signi�cantly lower than the other
models considered in this study.

5. Conclusions

This paper has been devoted to the empirical appli-
cation of functional models to the forecasting of supply
curves in electricity markets. Electricity markets provide
a suitable framework for the use of this new statistical
approach.

This manuscript contributes signi�cantly by expanding
the functional SARMAHX model to allow the inclusion of
up to two seasonalities and scalar covariates, allowing the
modelization of hourly functional time series by consider-
ing their daily and weekly seasonalities. This development
has lead to more accurate forecasts of the aggregated sup-
ply curves of the system, outperforming other well known
existing methods for estimating supply curves.

In addition, the identi�cation procedure based on the
functional autocorrelation function has proven to be cru-
cial for analyzing the correlation structure of the functional
time series and for selecting the correct AR and MA order
of the model.

The performance of the model has been validated with
a real forecasting case of hourly supply curves in the day-
ahead Italian electricity market. It has been shown how
the proposed model is a competitive model against other
well known existing methods for supply curve forecasting
for both 1-step and 24-step ahead forecasting.

The proposed model and identi�cation methodology
presented in this paper are not restricted to supply curves
alone. These techniques can be extended to other func-
tional time series found in electricity markets or in other
�elds. Some examples could be residual demand curves
forecasting or intraday continuous market price forecast-
ing in power systems or forward curves in �nancial mar-
kets. One of such applications could be the estimation of
electricity prices as a result of forecasting both the supply
and the demand curves of the system. Finally, additional
research could be done for measuring the importance of
the explanatory variables included in the model, the in-
clusion of dummy intervention variables or the usage of an
optimization algorithm that trains the model to minimize
the 24-step ahead forecasts instead of the one-step ahead
error.

6. Appendix

This appendix contains the formulation of the �nal
SARMAHX(2, 0) ×(1, 2)24 ×(1, 2)168 models that were �t-

ted in Section 4:

(
I−Ψ0,1B

1−Ψ0,2B
2
)(
I−Ψ1,1B

24
)(
I−Ψ2,1B

168
)
(Yt)=(

I−Θ1,1B
24−Θ1,2B

48
)(
I−Θ2,1B

168−Θ2,2B
336
)
(εt)

+ ΓcDx
D
t + ΓcWx

W
t + ΓcSx

S
t + ΓcEx

E
t + ΓcTx

T
t ,

(29)

where Ψj,i are autoregressive operators, Θk,l are moving
average operators, ΓcZ are regression integral operators and
xZt are the scalar covariates (D stands for demand, W
stands for wind production, S stands for solar produc-
tion, E stands for international exchanges and T stands for
thermal availability). In the case of the SARMAHXconc
model, the autoregressive and moving average operators
of (29) are concurrent operators (11).
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